Assimilating remote sensing data in a surface flux–soil moisture model

نویسندگان

  • William L. Crosson
  • Charles A. Laymon
  • Ramarao Inguva
  • Marius P. Schamschula
چکیده

A key state variable in land surface–atmosphere interactions is soil moisture, which affects surface energy fluxes, runoff and the radiation balance. Soil moisture modelling relies on parameter estimates that are inadequately measured at the necessarily fine model scales. Hence, model soil moisture estimates are imperfect and often drift away from reality through simulation time. Because of its spatial and temporal nature, remote sensing holds great promise for soil moisture estimation. Much success has been attained in recent years in soil moisture estimation using passive and active microwave sensors, but progress has been slow. One reason for this is the scale disparity between remote sensing data resolution and the hydrologic process scale. Other impediments include vegetation cover and microwave penetration depth. As a result, currently there is no comprehensive method for assimilating remote soil moisture observations within a surface hydrology model at watershed or larger scales. This paper describes a measurement–modelling system for estimating the three-dimensional soil moisture distribution, incorporating remote microwave observations, a surface flux–soil moisture model, a radiative transfer model and Kalman filtering. The surface model, driven by meteorological observations, estimates the vertical and lateral distribution of water. Based on the model soil moisture profiles, microwave brightness temperatures are estimated using the radiative transfer model. A Kalman filter is then applied using modelled and observed brightness temperatures to update the model soil moisture profile. The modelling system has been applied using data from the Southern Great Plains 1997 field experiment. In the presence of highly inaccurate rainfall input, assimilation of remote microwave data results in better agreement with observed soil moisture. Without assimilation, it was seen that the model near-surface soil moisture reached a minimum that was higher than observed, resulting in substantial errors during very dry conditions. Updating moisture profiles daily with remotely sensed brightness temperatures reduced but did not eliminate this bias. Copyright  2002 John Wiley & Sons, Ltd.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Soil Moisture Estimation in Rangelands Using Remote Sensing (Case Study: Malayer, West of Iran)

Soil moisture is generally regarded as the limiting factors in rangeland production. Although many studies have been conducted to estimate soil moisture in semiarid areas, there is little information on mountainous rangelands in west of Iran. The present study aims to investigate the soil moisture estimation in rangelands as compared to the other land uses over a mountainous area in central Zag...

متن کامل

Improving Soil Moisture Estimation with a Dual Ensemble Kalman Smoother by Jointly Assimilating AMSR-E Brightness Temperature and MODIS LST

Uncertainties in model parameters can easily result in systematic differences between model states and observations, which significantly affect the accuracy of soil moisture estimation in data assimilation systems. In this research, a soil moisture assimilation scheme is developed to jointly assimilate AMSR-E (Advanced Microwave Scanning Radiometer-Earth Observing System) brightness temperature...

متن کامل

Soil Moisture Initialization for Climate Prediction: Characterization of Model and Observation Errors

Current models for seasonal climate prediction are limited due to poor initialization of the land surface soil moisture states. Passive microwave remote sensing provides quantitative information on soil moisture in a thin near-surface soil layer at large scale. This information can be integrated with a land surface process model through data assimilation to give better prediction of the near su...

متن کامل

Monitoring root-zone soil moisture through the assimilation of a thermal remote sensing-based soil moisture proxy into a water balance model

Two types of Soil Vegetation Atmosphere Transfer (SVAT) modeling approaches can be applied to monitor root-zone soil moisture in agricultural landscapes. Water and Energy Balance (WEB) SVAT modeling is based on forcing a prognostic root-zone water balance model with observed rainfall and predicted evapotranspiration. In contrast, thermal Remote Sensing (RS) observations of surface radiometric t...

متن کامل

Towards the estimation root-zone soil moisture via the simultaneous assimilation of thermal and microwave soil moisture retrievals

The upcoming deployment of satellite-based microwave sensors designed specifically to retrieve surface soil moisture represents an important milestone in efforts to develop hydrologic applications for remote sensing observations. However, typical measurement depths of microwave-based soil moisture retrievals are generally considered too shallow (top 2–5 cm of the soil column) for many important...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2002